Lecture 1

```
Lecture 1
Concept
General framework for supervised learning
ERM: Empirical Risk Minimizer
Generalization
Supervised learning summary
Linear Regression
Formal Setup
Goal
Warmup
General least square solution
Optimization methods
```

image generation, text generation, game playing, protein folding.

Taxonomy: supervised, unsupervised, reinforcement.

- Supervised learning: Aim to predict outputs of future datapoints.
- Unsupervised learning: Aim to discover hidden patterns and explore data.
- Reinforcement learning: Aim to make sequential decisions.

Supervised ML: predict future outcomes using past outcomes.

image classification, machine translation

house price prediction: training data, extract features, correlation analysis...

Sale price \approx price per sqft (slope) \times square footage + fixed expense (intercept)

Concept

General framework for supervised learning

```
An input space: \mathcal{X} \in \mathbb{R}^d

Data points in d dimensions
In previous eg. d:1 (eg. footage)

Anf output space: y

y \in \mathbb{R} for sale price prediction
```

 $y \in \{\pm 1\}$ label classification

Goal: yearn a prediction $f(x): \mathcal{X}
ightarrow y$

Loss function: l(f(x), y) , depends on the task.

squared loss:
$$for \ y \in \mathcal{R}, \ l(f(x),y) = (f(x)-y)^2$$

Minimize loss over some distribution D over instances (x,y)

Def: Risk of prediction f(x) is:

$$egin{aligned} R(f) &= E_{(x,y) \sim D}[l(f(x),y)] \ &= \sum_{x',y'} Prob_D(x=x',y=y') \cdot l(f(x'),y') \end{aligned}$$

This is the actual, or the ideal parameter of the model, often hard to compute.

Challenge: Don't know distribution of data D.

i.i.d assumption: have a set of labelled instances distributed independently & identically from D. If E_1, E_2 are independent, then $\Pr(E_1 \cap E_2) = \Pr(E_1) \Pr(E_2)$.

Theoretical abstraction, often useful. Pay attention to whether this is valid! (need "stationarity")

Def: Given a set of labelled datapoeints:

$$S = \{(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\}$$

the empirical risk of any $f:\mathcal{X} o y$

$$\hat{R}_s(f) = rac{1}{n} \sum_{i=1}^n l(f(x_i), y_i)$$

which denotes the average loss over the data points.

Function class: a collection of functions: $\mathcal{X} o y$

$$X \in \mathbb{R}, y \in \mathbb{R}, F = f: y = wx + c$$

ERM: Empirical Risk Minimizer

Because the R(f) is hard to compute, so we compute the approximation drawn from data with iid assumption and minimize the $\hat{R}_s(f)$.

Def: function class $\mathcal{F} = \{f: \mathcal{X} o y\}\ l$ set of labelled datapoints S, ERM corresponds to

$$\min_{f \in \mathcal{F}} \hat{R}_s(f) = rac{1}{n} \sum_{i=1}^n l(f(x_i), y_i)$$

Generalization

$$R(f) = \hat{R}_s(f) + (R(f) - \hat{R}_s(f))$$

To minimize R(f) (test for new data)

First try to minimize $\hat{R}_s(f)$ (train by old data)

What's left is $\hat{R}(f) - \hat{R}_s(f)$, this is known as generalization gap.

Generalization: How well does predictions "generalize" to new samples?

Measuring Generalization: Training/Test paradigm

In theory: Generalization bounds (based on "complexity" of the model)

In practice: empirical evaluation

Divide data into

training set - a subset of data to train model

testing set - a subset of data to test model

Ideally: only use testing set once (a few times)

Supervised learning summary

Loss function: what's the right loss function for the task? depends on the problems that one is trying to solve, and on the rest.

Representation: what class of functions should we use?

Also known as the inductive bias?

No free lunch theorem: no model can do well on every task.

"All models are wrong, but some are useful", George Box.

Optimization: how to solve the ERM problems?

Generalization: will the predictions of our model transfer gracefully to unseen examples?

Linear Regression

n 阶矩阵 A 可逆,则 $|A|\neq 0$,为非奇异矩阵;r(A)=n 是满秩;列向量 $a_1,\cdots a_n$ 线性无关;对应的齐次方程组 AX=0 只有 0 解;A 的 n 个特征值非 0 。

n 阶矩阵 A 不可逆,则 |A|=0 ,为奇异(singular)矩阵;r(A)< n 不是满秩;列向量 $a_1,\cdots a_n$ 线性相关;对应的齐次方程组有非 0 解;A 的 n 个特征值存在 0 值。

House price prediction: the function loss

Squared error: $(y - f(x))^2$

Absolute error: |y-f(x)|

 $predicted\ price = price_per_sqft \times square\ footage + fixed_expense$

Formal Setup

Input: $\mathcal{X} \in \mathbb{R}^d$

Output: $y \in \mathbb{R}^d$

Training data: $S = \{(x_i, y_i), i = 1, \cdots, n\}$

Linear model: $f:R^l \to R$ with

$$egin{aligned} f(x) &= w_0 + \sum_{i=1}^d w_i x_i \ &= w_0 + w^T x \ &= [w_1, \cdots, w_d]^T \quad (weights, weight \, vectors) \ bias &= w_0 \end{aligned}$$

For notational convenience:

 $ilde{x}$ apppend 1 to each x as first feature $ilde{x} = [1 \ x_1 \ \cdots \ x_d]^T$

let $ilde{w} = [w_0 \ w_1 \ \cdots w_d]^T$ represent all d+1

Model: $f(x) = \tilde{w}^T \tilde{x}$

Goal

Minimize total squared error:

$$\hat{R}_s(ilde{w}) = rac{1}{n} \sum_i (f(x_i) - y_i)^2 = rac{1}{n} \sum_i (ilde{x}_i^T ilde{w} - y_i)^2$$

Def: Residual sum of squares:

$$R_{ss}(ilde{w}) = n\hat{R}_s(ilde{w}) = \sum_i (ilde{x}_i^T ilde{w} - y_i)^2$$

ERM: find $ilde{w}^* = \arg\min R_{ss}(ilde{w}), ilde{w} \in \mathbb{R}^{d+1}$ known as least squares equation.

Warmup

1.Warmup: d=0

$$egin{aligned} R_{ss}(w_0) &= \sum_i (w_0 - y_i)^2 \ &= n w_0^2 - 2 (\sum_i y_i) w_0 + const \ &= n (w_0 - rac{1}{n} \sum y_i)^2 + const \end{aligned}$$

Completion of squares.

$$w_0^* = rac{1}{n} \sum_i y_i \ (the \ average)$$

2.Warmup: d=1

$$R_{ss}(ilde{w}) = \sum_i (w_0 + w_1 x_i - y_i)^2$$

General approach? find stationary point (point with 0 gradient)

$$egin{aligned} rac{\partial R_{ss}(ilde{w}_0)}{\partial ilde{w}_0} &= 0 \Rightarrow \sum_i (w_0 + w_1 x_i - y_i) = 0 \ rac{\partial R_{ss}(ilde{w}_1)}{\partial ilde{w}_1} &= 0 \Rightarrow \sum_i (w_0 + w_1 x_i - y_i) x_i = 0 \end{aligned}$$

a linear system:

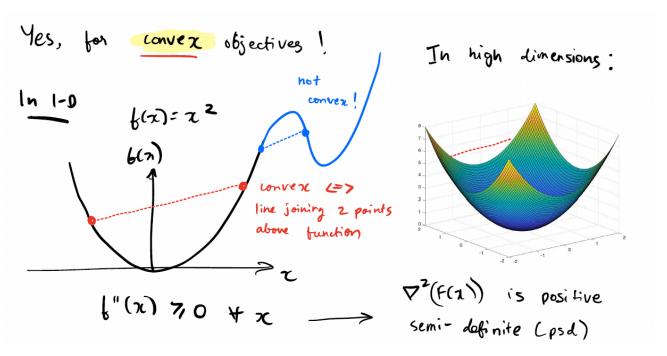
$$egin{pmatrix} n & \sum x_i \ \sum_i x_i & \sum x_i^2 \end{pmatrix} egin{pmatrix} w_0 \ w_1 \end{pmatrix} = egin{pmatrix} \sum_i y_i \ \sum_i x_i y_i \end{pmatrix}$$

solve:

$$egin{pmatrix} egin{pmatrix} w_0^* \ w_i^* \end{pmatrix} = egin{pmatrix} n & \sum x_i \ \sum_i x_i^2 \end{pmatrix}^{-1} egin{pmatrix} \sum_i y_i \ \sum_i x_i y_i \end{pmatrix}$$

assuming $\begin{pmatrix} n & \sum x_i \\ \sum_i x_i & \sum_i x_i^2 \end{pmatrix}$ is invertible.

Attention: for convex objectives, stationary points are minimizers.



If $f''(x)\geqslant 0$, or we say $abla^2(F(x))$ is positive semi-definite (psd, $x^TAx\geqslant 0$), f(x) is convex function.

General least square solution

$$R_{ss}(\tilde{w}) = \sum_{i} (\tilde{x}_{i}^{T} \tilde{w} - y_{i})^{2}$$

$$Set \nabla R_{ss}(\tilde{w}) = 0$$

$$\nabla R_{ss}(\tilde{w}) = 2 \sum_{i} \tilde{x}_{i} (\tilde{x}_{i}^{T} \tilde{w} - y_{i})$$

$$\propto (\sum_{i} \tilde{x}_{i} \tilde{x}_{i}^{T}) \tilde{w} - \sum_{i} \tilde{x}_{i} y_{i}$$

$$= (\tilde{X}^{T} \tilde{X}) \tilde{w} - \tilde{X}^{T} y = 0$$

$$\tilde{x}_{i} \in \mathbb{R}^{(d+1) \times 1}$$

$$\tilde{X} = \begin{pmatrix} -x_{1}^{T} - - \\ \vdots \\ -x_{n}^{T} - - \end{pmatrix} \in \mathbb{R}^{n \times (d+1)}$$

$$y = \begin{pmatrix} y_{1}^{T} \\ \vdots \\ y_{n}^{T} \end{pmatrix} \in \mathbb{R}^{n}$$

$$(\tilde{X}^{T} \tilde{X}) \tilde{w} = \tilde{X}^{T} y$$

$$\therefore \tilde{w}^{*} = (\tilde{X}^{T} \tilde{X})^{-1} X^{T} y \in \mathbb{R}^{(d+1) \times 1}$$

$$\tilde{X}^{T} \tilde{X} = \begin{pmatrix} | & | & | \\ \tilde{x}_{1} & \cdots & \tilde{x}_{n} \\ | & | & | \end{pmatrix} \begin{pmatrix} --x_{1}^{T} - - \\ \vdots \\ -x_{n}^{T} - - \end{pmatrix} = \sum_{i} \tilde{x}_{i} \tilde{x}_{i}^{T} \in \mathbb{R}^{(d+1) \times (d+1)}$$

suppose each feature is 0-mean. covariance matrix: $\tilde{X}^T\tilde{X}_{(d+1)\times(d+1)}$

suppose
$$ilde{X}^T ilde{X}=I, then \ ilde{w}^*= ilde{X}^Ty$$

each weight is the covariance of the feature with label y.

$$w^* = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T y$$

to invert $ilde X^T ilde X\in\mathbb R^{(d+1)} imes\mathbb R^{(d+1)}$. (Takes time $O(d^3)$, sometimes hard to invert with complex data)

$$egin{aligned} y_i &= x_i^T w = w^T x_i \ y_{n imes 1} &= ilde{X}_{n imes (d+1)} w_{(d+1) imes 1} = egin{pmatrix} ilde{x}_1^T w \ dots \ ilde{x}_n^T w \end{pmatrix} \end{aligned}$$

Some useful induction:

$$||A||_2^2 = A^T A$$
 $(AB)^T = B^T A^T$
 $a^T b = b^T a$
 $\frac{\partial x^T A x}{\partial x} = (A + A^T) x$
 $\frac{\partial w^T x}{\partial x} = w$

So we have another approach:

$$egin{aligned} R_{ss} &= \sum_i (ilde{x}_i^T ilde{w} - y_i)^2 = || ilde{X} ilde{w} - y||_2^2 \ &= (ilde{X} ilde{w} - y)^T (ilde{X} ilde{w} - y) \ &= ilde{w}^T ilde{X}^T ilde{X} ilde{w} - y^T ilde{X} ilde{w} - ilde{w}^T ilde{X}^T y + cnt \ &
abla_w R_{ss} &= (ilde{X}^T ilde{X} + (ilde{X}^T ilde{X})^T) ilde{w} - ilde{X}^T y - ilde{X}^T y = 0 \ & \therefore w^* = (ilde{X}^T ilde{X})^{-1} ilde{X}^T y \end{aligned}$$

Optimization methods

GD(Gradient Descent): simple and fundamental

SGD(Stochastic Gradient Descent): faster, effective for large-scale problems

GD: first-order methods

Keep moving in the negative gradient direction

$$egin{aligned} start \ with \ some \ w^{(0)} \ For \ t = 0 \ to \ T: \ & w^{(t+1)} = w^{(t)} - \eta
abla F(w^{(t)}) \ & t = t+1 \end{aligned}$$

 $\eta > 0$ is called step size (learning rate)

- in theory % should be set in terms of some parameters of f .
- in practice we just try several small values.
- might need to be changing over iterations (think f(w) = |w|)
- adaptive and automatic step size tuning is an active research area.

Why GD?

Intuition: first-order taylor approximation

$$egin{aligned} F(w) &pprox F(w^{(t)}) +
abla F(w^{(t)})(w-w^{(t)}) \ F(w^{(t+1)}) &pprox F(w^{(t)}) - \eta |
abla F(w^{(t)}|_2^2 \leqslant F(w^{(t)}) \end{aligned}$$

this is only an approximation, and can be invalid if step size is too large.

Convergence guarantees for GD

$$F(w^{(l)} - F(w^*)) \leqslant arepsilon$$

for nonconvex objectives, guarantees exist:

How close is $\boldsymbol{w}^{(t)}$ as an approximate stationary point

$$||
abla F(w^{(t)})||\leqslant arepsilon$$

if it is convex, optimization is unique. That means stationary point = global minimizer