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image generation, text generation, game playing, protein folding.
Taxonomy: supervised, unsupervised, reinforcement.

e Supervised learning: Aim to predict outputs of future datapoints.
e Unsupervised learning: Aim to discover hidden patterns and explore data.
e Reinforcement learning: Aim to make sequential decisions.

Supervised ML: predict future outcomes using past outcomes.
image classification, machine translation
house price prediction: training data, extract features, correlation analysis...

Sale price = price per sqft (slope) x square footage -+ fixed expense (intercept)

Concept
General framework for supervised learning
An input space: X € R¢
Data points in d dimensions
In previous eg. d : 1 (eg. footage)
Anf output space: y
y € R for sale price prediction

y € {41} label classification



Goal: yearn a prediction f(z) : X — y
Loss function: [(f(z),y) , depends on the task.

squared loss: for y € R, I(f(z),vy) = (f(z) — y)?
Minimize loss over some distribution D over instances (, y)
Def: Risk of prediction f(z) is:

R(f) = B y~pll(f(z),y)]
= Probp(z =2',y =) - I(f(z),v)

(E,,y/
This is the actual, or the ideal parameter of the model, often hard to compute.
Challenge: Don't know distribution of data D .

i.i.d assumption: have a set of labelled instances distributed independently & identically from D . If 'y, Eq
are independent, then Pr(E; N E2) = Pr(E;) Pr(Es).

Theoretical abstraction, often useful. Pay attention to whether this is valid! (need "stationarity")

Def: Given a set of labelled datapoeints:

S ={(z1,y1), (x2,92), - (@n,yn)}

the empirical risk ofany f : X — y
A 1 <&
R(f) = . Z W f(zi)yi)
i=1

which denotes the average loss over the data points.
Function class: a collection of functions: X — y

XeRyeR F=f:y=wx+c
ERM: Empirical Risk Minimizer

Because the R(f) is hard to compute, so we compute the approximation drawn from data with iid assumption
and minimize the R,(f) .

Def: function class F = {f : X — y} I set of labelled datapoints .S, ERM corresponds to

feF

min R,(f) = %il(f(wi),yi)



Generalization

To minimize R(f) (test for new data)
First try to minimize }?s(f) (train by old data)
What's leftis R(f) — R,(f) , this is known as generalization gap.
Generalization: How well does predictions "generalize" to new samples?
Measuring Generalization: Training/Test paradigm
In theory: Generalization bounds (based on "complexity" of the model)
In practice: empirical evaluation
Divide data into
training set - a subset of data to train model
testing set - a subset of data to test model
Ideally: only use testing set once (a few times)
Supervised learning summary

Loss function: what's the right loss function for the task? depends on the problems that one is trying to solve,
and on the rest.

Representation: what class of functions should we use?
Also known as the inductive bias?

No free lunch theorem: no model can do well on every task.
"All models are wrong, but some are useful", George Box.
Optimization: how to solve the ERM problems?

Generalization: will the predictions of our model transfer gracefully to unseen examples?
Linear Regression

n e AN, WAl #0, REFRER; r(A) =n 2FH%; JEE a1, -0, TR WEAFTRARE
HAX=0RB 0 An MHEEIFO,

n NIERE A ReIE, W |A| =0, AFRGingulaniERE: r(A) < n T2HWK; JIEE a1, - a, LHER; N
PR AZAERIEO & AN n MFEERFEO E.

House price prediction: the function loss

Squared error: (y — f(x))?



Absolute error: |y — f()|

predicted price = price_per_sqft X square footage + fixed_expense
Formal Setup

Input: X € R¢

Output: y € R4

Training data: S = {(x;,¥:),i = 1,---,n}

Linear model: f : R' — Rwith

d
flz) = wo + Z’wiwi
=1

T

=wytw<zx
w = [wi,---,wq]’ (weights, weight vectors)
bias = wy
For notational convenience:
Z apppend 1 to each z as first feature & = [1 2y - -- wd]T

let @ = [wo wy ---wgy]” representall d + 1
Model: f(z) = wT%
Goal
Minimize total squared error:
Ru@) = — Y (f(e) —yi) = — S (EF0 — yi)?

Def: Residual sum of squares:

Ryo(®) = nRy(®) = > (& D — y:)°

i
ERM: find @* = argmin R, (W), W € R+ known as least squares equation.
Warmup

1.Warmup:d = 0
Rss(wO) - Z(wO - y’i)z

= nwj — 2(2 yi)wo + const

1
= n(wy — . Zyi)z + const



Completion of squares.
0 _1 (t )
Wy = E ; (the average
0 n : Yi g
2.Warmup:d =1

Roo(®) = Y (wo + wiz; — 3;)°

i

General approach? find stationary point (point with 0 gradient)

ORss(wo)
aRss Iy
—aﬁg?}l) =0 = ;(’wo +wiz; —y;)z; =0

a linear system:

(e 50 () - (220

() (o 55 ()
n Y

assuming ( 2) is invertible.

Attention: for convex objectives, stationary points are minimizers.

solve:
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If () > 0, or we say V2(F(z)) is positive semi-definite (psd, 27 Az > 0), f(x) is convex function.
General least square solution
Rys(w) = Z(i';fﬂf — i)
Set VRSS(

Z; € R(d+1)xl
[+l
X: E c Rnx(d+1)
(vi
y=| : | €eR”
\yZ
(XTX)w = XTy
Lt = (XTX) X Ty e RUFDX
_ _ 2T _
I !
X'x=\z - z, _ Z 7,57 € REHDX(@+D)
DA W S

suppose each feature is 0-mean. covariance matrix: XTX(dH)X(dH)
suppose XX = I, then w* = XTy
each weight is the covariance of the feature with label y.

— (XTX)XTy

to invert XX € R+ x R (Takes time O(d?), sometimes hard to invert with complex data)

Y; = CL‘?’LU = wai
:i{w
Ynx1 = an(d+1)w(d+1)x1 = :
T

Some useful induction:



|A]3 = ATA

(AB)T = BT AT
a’b=0b"a
Ty
39;—3:‘” = (A+ ATz
Owlx
=w
ox

So we have another approach:

Ry = Z(i‘?ﬁ) —y:)” = || X@ — o3
= (X —y)" (X —y)
= o' XTXw — y" Xw — wT XTy + ent
VoRss = (XTX +(XTX) Do — XTy - XTy=0

Cwt = (XTX—)—lXTy
Optimization methods
GD(Gradient Descent): simple and fundamental
SGD(Stochastic Gradient Descent): faster, effective for large-scale problems
GD: first-order methods
Keep moving in the negative gradient direction

start with some w®
Fort=0toT :
wttD = ® nVF(w(t))
t=t+1

n > 0is called step size (learning rate)

in theory % should be set in terms of some parameters of f.

in practice we just try several small values.

might need to be changing over iterations (think f(w) = |w|)
adaptive and automatic step size tuning is an active research area.

Why GD?
Intuition: first-order taylor approximation

F(w) = F(w®) + VF(w®)(w — w®)
F(w"™) = F(w") — g VF(w?]; < F(w?)

this is only an approximation, and can be invalid if step size is too large.



Convergence guarantees for GD
F(wY — F(w")) < e
for nonconvex objectives, guarantees exist:

How close is w® as an approximate stationary point
IVE®)|| <e

if it is convex, optimization is unique. That means stationary point = global minimizer
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